
1

Runstats has always been a challenge in terms of what syntax to use, how much

statistics to collect and how frequent to collect these statistics. The past couple of DB2

releases have introduced some interesting features which can assist you in several

ways to both automate and figure out which statistics the Optimizer would like to see

in order to make better recommendations. We will look into the RUNSTATS profiles

and the two different FEEDBACK tables populated by the Optimizer.

2

3

RUNSTATS has always been a challenge in terms of what syntax to use, how much
statistics to collect and how frequent to collect these statistics. The past couple of
DB2 releases have introduced some interesting features which can assist you in
several ways to both automate and figure out which statistics the Optimizer would
like to see in order to make better recommendations. We will look into the RUNSTATS
profiles and the two different FEEDBACK tables populated by the Optimizer.

4

5

RUNSTATS has indeed evolved over the past +30 years – lets look at what you could

do in DB2 V1 compared to DB2 11

6

The very first release of DB2 provided very simple RUNSTATS syntax – not much to
consider.
Looking at all the new features/keywords introduced over the next +10 releases
leaves a lot to consider and think about. The task of deciding WHAT to RUNSTATS and
which parameters to use has NOT gotten any easier – but it is even more crucial than
ever to provide the Optimizer with the “correct” keywords in order to get the best
possible performance.
DB2 10 introduced PROFILES making it easier to “memorize” what to RUNSTATS on
the TABLE level, and we will look into the details how to exploit this.
Still – we need to consider WHICH parameters to use depending on the static SQL
being executed as well as the more and more frequent dynamic SQL – DB2 11
introduced some cool new features to assist in this space and we will cover all of
these topics in the next 45 minutes.

The newer parameters are highlighted in RED / GREEN and YELLOW.

7

Based on all the changes to the RUNSTATS syntax – and the Optimizer being more and
more sensible/sensitive to the statistics provided, finding the best RUNSTATS syntax is
not an easy task.
Once you have identified the “perfect” statements – how do you keep track of these
in order to be able to use these next time. Runstats PROFILES can be your lifeline
here.

However – once you have created a profile, this is not a guarantee that someone
won’t mess it up. These can still be overridden and modified and even deleted – and
there is no way to make sure the profile is always used (and there are some
limitations too).

Considering the advantages of profiles (we will see these) maybe this is a great time
to install a process to always use profile if available. This requires standards and
discipline !!!

8

DB2 10 introduced a new catalog table : SYSIBM.SYSTABLES_PROFILES.

There are a number of important “pieces” to pay attention to once you start to
exploit this feature:

1) It is TABLE based – not tablespace or index
2) No indexes are provided out-of-the-box, so if you really start to exploit, additional

indexes might be useful depending on how you are exploiting this feature.
3) The most important column is PROFILE_TEXT which is a 1M CLOB column making

some tasks a challenge which we will cover later.

9

When you look at the table DDL – you can see the tablespace and database names
are not recorded in the RUNSTATS PROFILE table – only the table creator and table
name, so a PROFILE is table specific.

Some of the RUNSTATS syntax you have been using for years might not work when
creating and updating profiles. Since the PROFILE is table specific and you potentially
could have multiple tables in one tablespace, when a PROFILE is created (using SET
PROFILE command) you will have to specify the table(s).

Note: the SET PROFILE does NOT execute RUNSTATS – all that happens is the profile is
created in SYSIBM.SYSTABLES_PROFILES.

10

Once the SET PROFILE syntax has been corrected, a row is inserted into the PROFILE
table. The PROFILE_TEXT (CLOB column) will hold everything but the TABLESPACE and
TABLE parameters from the syntax.

Two columns are not really used (but you can update if needed):

PROFILE_UPDATE describes when the PROFILE row was updated / inserted.
PROFILE_USED unfortunately doesn’t tell you when this profile was used last time
which would have been nice.

In order for RUNSTATS to use the profile you have created, simply execute the
RUNSTATS with the tablespace name and table name ONLY – and specify USE
PROFILE.

11

If you want to add additional keywords to RUNSTATS and at the same time use
PROFILE – this is not supported.
You will have to first UPDATE the profile and then USE the profile – so it is a two-step
process, but then the profile is changed for good which might defeat the purpose.
Of course it is possible to do RUNSTATS without specifying a profile at all – even
though a profile does exist.

12

Once you update your RUNSTATS statement and use UPDATE PROFILE, you will be
able to use RUNSTATS and USE PROFILE with the additional keywords.

As you can tell from the PROFILE_TEXT, it will keep on being appended with the
keywords you add using UPDATE PROFILE.

Again – please remember that RUNSTATS is NOT executed when using UPDATE
PROFILE – it is still a two-step procedure to get the job done.

13

In case you don’t know WHAT kind of access path is present in the DB2 catalog – you
can retrieve the RUNSTATS KEYWORDS needed to produce what is present:

Using the SET PROFILE FROM EXISTING STATS

This kind of tells you why the PROFILE_TEXT is a 1M CLOB column – there can be a
LOT of information in the catalog assisting the DB2 Optimizer. This will also provide
you information about what OTHERs have RUNSTAT’ed – and it can be very helpful to
identify what kind of statistics you don’t want to be collected.

In this case, I never created the control cards for RUNSTATS to collect all these
COLGROUPs – someone else must have requested these, but this syntax does retrieve
what’s present in the catalog.

Be careful however – since now the PROFILE will hold statistics to collect which you
might not care about – but it is a great help and you can save these control cards
(somehow) and RESET the current statistics (more about this later).

In this case – the RUNSTATS syntax being recorded in the PROFILE is almost 7000 byte
. !!!!!!!!!!!!!!!!

Good luck formatting and changing – we will look at this later since there are some
challenges.

14

Looking at the example on the previous slide – you might find you have way too much
or too outdated statistics in the catalog for the Optimizer to consider – you can very
easily eliminate ALL existing statistics (or stale statistics) by using the RESET
ACCESSPATH keywords with RUNSTATS (without using PROFILE).

Executing the RESET ACCESSPATH a second time without any RUNSTATS in-between
illustrates the statistics used by the optimizer is really gone. The catalog will look like
the object was just created – having negative one all over the place.

15

16

Let’s have a closer look at how you can modify the content of a PROFILE.

Executing RUNSTATS with a KEYWORD (here COLUMN) will replace that specific part
of the profile.
You can also MODIFY an existing COLGROUP the same way.

If you want to DELETE a part of the profile – that is a complete different story which
we will cover later.

17

We just covered how to modify one or more parts of the profile – simply using the
KEYWORD with the new content.

Here is the issue: there is no way that I know of to retrieve the PROFILE content –
modify it and then reload the profile.

What I have done successfully is – one of two methods:

1) Use SQL UPDATE statement with CONCAT to modify the content. After all, it’s a
CLOB column so anything you can think of using SQL applies.

2) You could also UNLOAD the content – then modify it – execute runstats with
DELETE PROFILE and do a load resume yes.

3) Finally – if you have an editor in place, simply edit the content.

However – be careful since RUNSTATS with syntax USE PROFILE is picky and will tell
you if “he/she” doesn’t like what you have done.

18

Another interesting story – unfortunately I have NOT been able to verify the
documentation.
The IBM documentation says that if you currently have partition specific keywords in
the profile, updating the profile with non-specific partition, the existing profile
content for the index partitions will be wiped out.

From my perspective – I really don’t worry about this since I don’t see a major need
for collecting specific stats for specific index partitions.

The RUNSTATS statement for partition 3 in the box executes fine without specifying
profile but it fails if you attempt to set / update the profile.

19

20

When to RUNSTATS and especially when to REBIND always turn into a heated
discussion.

There are many ideas / philosophies

I prefer to only RUNSTATS and REBIND when I know for sure I can benefit.

21

This was how you can be prepared and mimic the production environment – but no
matter how much you prepare, something will go wrong sooner or later – the access
path will change for the worse – and this is where you really can prepare yourself and
“get back to normal” as quickly as possible.

When you bind a PACKAGE, a new parameter named PLANMGMT can be used to
mitigate the nightmare of the favorite access path to be gone for good. The value OFF
is what we have had since packages were introduced.
The value EXTENDED will save the original access path, the current access path prior
to the REBIND will become the PREVIOUS and a new access path is generated. If you
are dissatisfied with the new access path, all you need to do is another rebind
specifying SWITCH(PREVIOUS) and you’re back to your previous access path (the
great one) before the rebind which changed the access path for the worse.

DB2 10 and DB2 11 has added more interesting options to the REBIND process
allowing you to better control when access paths are changed : APREUSE and
APCOMPARE are those options you might want to look into.
Both these options as well as the ability to also preserve access paths for dynamic
statements are not discussed in this presentation – but several presentations are
available out there on the crazy web.

22

Earlier we discussed the importance of having access path information available, and
even though you always rebind or bind your packages with explain(YES), if that
package later was invalidated and DB2 automatically did the rebind (or even someone
else) – how can you tell the information stored in the explain-tables is the
information actually used when the package executes ?

In order to make sure you know exactly what the access path is, DB2 11 comes to the
rescue : it is now possible to retrieve the access path information from the directory.
This will really eliminate a lot of the guesswork and uncertainty when debugging
what DB2 is doing in terms of access path analysis. The best part is that the package
doesn’t have to have the EXPLAIN(YES) option enabled when it went through the
BIND/REBINDS originally.

23

24

25

26

One of the feedback tables is part of the DB2 catalog :

SYSIBM.SYSSTATFEEDBACK

You can kind of compare this table with the RTS feature introduced initially in DB2 V7
– information is gathered in memory and externalized in conjunction with the RTS
statistics/metrics.

27

Besides SYSIBM.SYSSTATSTFEEDBACK – there’s a similar table used in the same
fashion : DSN_STAT_FEEDBACK

The two FEEDBACK tables are used in two different scenarios. SYSSTATFEEDBACK is
populated via BIND, REBIND and PREPARE while the other one via EXPLAIN (requires
the table is created with the same schema as the other explain table(s)).

Another difference is that SYSSTATFEEDBACK is cleaned up by RUNSTATS when the
“requested” statistics is collected via RUNSTATS – DSN_STAT_FEEDBACK is NOT
cleaned up.

28

Let us have a close look at how these tables function in real life:

For Bind, Rebind and prepare – in memory – the statistics missing which potentially
could have been used by the optimizer is recorded. Based on the same timer used by
RTS – this information is externalized into SYSSTATFEEDBACK. Just like RTS, the
information can also be externalized by using the ACCESS DB command.

DSN_STAT_FEEDBACK is populated directly into the table during EXPLAIN.

Please remind yourself that the DB2 optimizer is COST based.

This being said – the tables are populated with information which POTENTIALLY could
have been used by the optimizer if present, but there is no guarantee that the access
path can change – nor that that the “missing” information is needed to collect.

29

SYSSTATFEEDBACK is a new table used by the Optimizer to report “missing stats”,
insufficient stats” and other discrepancies.
The content isn’t ready and readable for the human eye, so it will take some learning
unless you want to depend on tools interpreting the content.
At least the column=REASON point you in the right direction.

30

We already mentioned how the two FEEDBACK tables are populated.

Unlike the FEEDBACK table associated with EXPLAIN (where you really have no
control), there are a few parameters you need to be aware of in terms of dealing with
SYSIBM.SYSSTATFEEDBACK:

1) STATFDBK_SCOPE is a new DSNZPARM parameter which controls whether you
want feedback for STATIC only, DYNAMIC only, BOTH static and dynamic or BOTH
static and dynamic.

2) SYSTABLES has a new column where you can describe whether to have DB2
collect the “missing information” or not.

3) Finally – the last point of control is a column in SYSSTATFEEDBACK named
BLOCK_RUNSTATS which is NOT controlled by DB2 at all. It is meant to be used by
“tools” – BLOCK_RUNSTATS.

It is time to have a closer look at how to execute RUNSTATS based on how the
optimizer provides feedback !

31

Once you have enabled DB2 to collect “missing statistics” you can start to make sure
you collect the “appropriate” RUNSTATS information based on SYSSTATFEEDBACK.
One issue to have in mind is – not every table being reported on is eligible tor
RUNSTATS – this example is the directory table SYSLGRNX, but as you can see, it is
NOT possible to execute RUNSTATS against directory objects, so maybe you should
consider excluding DB01 objects by updating SYSTABLES and mark these as NON-
collectible ???

Another issue to consider is, even though you mark SYSSTATFEEDBACK.block_runstats
as “Y”, this doesn’t prohibit anyone from collecting RUNSTATS statistics.

32

If you decide to “listen” to the optimizer and start to modify your favorite runstats,
you do have a quite a task ahead of you – depending on far you want to go.

One issue you need to consider is how DB2 (runstats) does the cleanup of
SYSSTATFEEDBACK. When you follow the feedback provided and execute the
corresponding runstats, the information you used from SYSSTATFEEDBACK leading to
the corresponding runstats will be removed by runstats.

You do have the opportunity to SQL DELETE from SYSTSATFEEDBACK yourself if so
desired, but the information will probably be re-populated 

From my perspective, I would like the column LAST_USED in SYSSTATFEEDBACK to be
extended from DATE to TIMESTAMP – and I would like the date to reflect when a
RUNSTATS USE last time used the information.

What is neat is – when an object is dropped, SYSTATSFEEDBACk is cleaned up too –
just like RTS.

Despote all these nice features – there’s always a Christmas wishlist: I would like to
see when RUNSTATS executed really used the profile. We have the LAST_USED
column so maybe a wish for DB2 Cypress ???

33

Let’s walk through a live scenario to see how the information flows and the changes
based on the action you take.

1) We create a copy of SYSTABLES including the associated indexes.
2) Check SYSSTATFEEDBACK to see if anything got inserted. In order NOT to wait for

the timer to externalize, and to make sure we look at the latest information,
ACCESS DB is executed prior to every view of SYSSTATFEEDBACK.

3) Insert rows into the table and check what happened.
4) RUNSTATS tablespace (basic runstats) and check content
5) RUNSTATS tablespace with INDEX(ALL) and check
6) BIND PACKAGE and check
7) RUNSTATS using TABLE syntax and check
8) One final check into SYSSTATFEEDBACK

34

SYSSTATFEEDBACK did not get populated by creating a table.

Once the INSERT statement was executed, information was gathered: due to the
INSERT statement being PREPARE’d (one of the three tasks which will populate the
table).

We got one row TYPE=T telling us RUNSTATS is missing for the tablespace.
We got one row for each of the indexes telling us RUNSTATS INDEX(….) is missing.

Let’s RUNSTATS the TABLESPACE as the first task and see the content change ?.

35

As expected, doing RUNSTATS on the TABLESPACE caused the TYPE=T row to be
deleted by runstats.
Let’s do the RUNSTATS of the indexes.

36

RUNSTATS TABLESPACE db.td INDEX(all) executed, and all the remaining rows for this
object was cleaned up by RUNSTATS – very nice !!

37

Now it is time to BIND a package with statements referencing this table
IDUG15.SYSTABLES.

Two rows were inserted into SYSSTATFEEDBACK – both being COLUMNS from the
table.
The interesting thing is – column=NAME is NOT the first column in any index, so there
must be predicates in the package referencing this column.
Column=TYPE is not in ANY index at all – again this column is used in various WHERE
predicates.
TYPE=C means that the Optimizer would like to see CARDINALITY for these columns –
maybe a different access path can be chosen

38

The previous scenario was pretty basic, so let us have a closer look at what kind of
challenges you might face once you start to exploit this feature.

This table has a LOT of content in SYSSTATFEEDBACK – there really is a lot to digest
and think about.

Only one BASIC TABLESPACE and BASIC INDEX RUNSTATS needed – the rest of the
information is related to CARDINALITY, so time put the thinking hat on !!
We also have a FREQUENCY information : TYPE=F

Please note the different LASTDATE dates – might give you a clue when / why the
information was provided and by who??

Another great piece of information is the NUMCOLUMNS (number of columns which
need COLGROUP COLNO) – for readability I have expanded this column into HEX so it
can be correlated to the TABLE-COLUMN-NUMBERS.

39

If we look at the first row where TYPE=C and NUMCOLUMNS=6, we need to unpack
the COLGROUPCOLNO column in order to identify the corresponding column names
from SYSCOLUMNS.

Then this information can be transformed into a COLGROUP parameter.

40

Just by executing the most basic RUNSTATS using TABLE(ALL) and INDEX(ALL)
eliminates most of the content from SYSSTATFEEDBACK – and there’s only two entries
left.

In order to eliminate TYPE=C, we need the COLGROUP parameter but have to
“unpack” the 7 columns into HEX and then find the corresponding column numbers
from SYSCOLUMNS for that specific table.

Only one left now – TYPE=F so we need FREQVAL. What number to pick ???? I picked
20 and the default is 10, so please use your best judgment.

All of these parameters can now be added to a RUNSTATS PROFILE so you don’t need
to memorize.

41

We haven’t really covered the an associated column (new in DB2 11) in
SYSIBM.SYSTABLES.
The column STATS_FEEDBACK will block the optimizer from feeding information into
SYSSTATFEEDBACK.

42

As always Steen has a Christmas wishlist for Santa :

1) One issue which did exist in DB2 10 has been resolved in DB2 11 – if using LISTDEF
for your RUNSTATS and just one table doesn’t have a profile, the entire process
will fail.

2) The PACKAGE name feeding information isn’t recorded in SYSSTATFEEDBACK. I
understand there probably will be dozens or hundreds of packages, but somehow
this information could be useful – perhaps an internal identifier along with one
additional table so you can correlate the information.

3) Since the optimizer doesn’t feed DUPLICATE information (could be useful if
package name was introduced), a counter for the information in
SYSSTATFEEDBACK.

4) It would have been nice for this research to have the DATE column expanded to
TIMESTAMP. Then I would not have been forced to use ACCESS DB between every
case to get an instate view.

5) Finally – INLINE STATS for reorg and load do NOT support profiles Maybe
NEVER do inline stats anymore ?

43

DB2 indeed does a great job recording “missing” runstats in SYSSTATFEEDBACK, and
once you have identified the needed runstats, instead of memorizing these, you can
describe the syntax in the SYSTABLES_PROFILES by using the SET / UPDATE PROFILE
syntax in RUNSTATS.

Let’s see if the grass really is greener . . . How does DB2 handle schema changes like
DROP COLUMN and RENAME COLUMN ?

44

DB2 cleans up SYSSTATFEEDBACK very nicely – the RUNSTATS profiles is a different
matter – you need to make sure to keep the COLUMN and COLGROUP parameters
updated if used in the RUNSTATS profile, and this is a manual process.
Another place where you need to pay attention is STALE statistics. DB2 doesn’t
provide a mechanism to inform you about this situation.
maintaining schema changes in SYSSTATFEEDBACK.

45

46

47

Integrating the granular defined RUNSTATS derived from SYSSTATFEEDBACK with
SYSTABLES_PROFILES can for sure help a lot getting the appropriate statistics
generated when needed.

DB2 does a great job maintaining currency for SYSSTATFEEDBACK

48

49

50

51

52

