G

echnologies

Too Many Fights in Your Marriage
with Runstats ?
Try Profiles and Feedback Tables.

Steen Rasmussen, Sr. Engineering Services Architect
CA technologies

technologies

G

technologies

Agenda

= A thorough walk thru RUNSTATS PROFILES.

= DB2 11 SYSSTATFEEDBACK and DSN_STAT_FEEDBACK, how
does DB2 populate these new tables and when.

= New ZPARM and DB2 catalog entries to control these new
features.

* How to “control” and interpret the FEEDBACK tables.

* The entire presentation will use real life scenarios to get a
good feeling how the componentsinteroperate.

@

chnologies

Runstats has always been a challenge in terms of what syntax to use, how much
statistics to collect and how frequent to collect these statistics. The past couple of DB2
releases have introduced some interesting features which can assist you in several
ways to both automate and figure out which statistics the Optimizer would like to see
in order to make better recommendations. We will look into the RUNSTATS profiles
and the two different FEEDBACK tables populated by the Optimizer.

G

technologies

DISCLAIMER

= Expressions are purely my own — not CA technologies.

* This presentation is based on using a real life DB2 11
system with maintenance as of July 2015 -
discrepancies might exist.

= Your experiences may vary.

nnnnnnnnnnnn

G

technologies

ABSTRACT

= RUNSTATS has always been a challenge in terms of what
syntax to use, how much statistics to collect and how frequent
to collect these statistics. The past couple of DB2 releases
have introduced some interesting features which can assist
you in several ways to both automate and figure out which
statistics the Optimizer would like to see in order to make
better recommendations. We will look into the RUNSTATS
profiles and the two different FEEDBACK tables populated by
the Optimizer.

@

chnologies

RUNSTATS has always been a challenge in terms of what syntax to use, how much
statistics to collect and how frequent to collect these statistics. The past couple of
DB2 releases have introduced some interesting features which can assist you in
several ways to both automate and figure out which statistics the Optimizer would
like to see in order to make better recommendations. We will look into the RUNSTATS
profiles and the two different FEEDBACK tables populated by the Optimizer.

technologies

RUNSTATS PROFILES

G

technologies

RUNSTATS EVOLUTION over 30 years

(NSNS '\\\\\\\\\‘ DS UAL

© 2016 CA ALL RIGHTS RESERVED. technologies

RUNSTATS has indeed evolved over the past +30 years — lets look at what you could
do in DB2 V1 compared to DB2 11

G

technologies

What did RUNSTATS look like in DB2 V1R1MO

RUNSTATS TABLESPACE dbname.tsname
INDEX (ALL | index-name)
SHRLEVEL REFERENCE | CHANGE

RUNSTATS TABLESPACE dbname.tsname PART x

FORCEROLLUP yes |no

TABLE (ALL name) SAMPLE xx TABLESAMPLE SYSTEM AUTO X
REPEATABLE-X

INCLUDE (NPI) COLUMN (ALL column-name,

SORTNUM x

COLGROUP (col,col) FREQVAL COUNT x MOST BOTH LEAST
HISTOGRAM NUMQUANTILES X

INDEX (ALL = index) KEYCARD FREQVAL NUMCOLS x COUNT
(RESET ACCESSPATH HISTORY ACCESSPATH)

SET PROFILE FROM EXISTING STATS

‘USE | UPDATE | DELETE PROFILE | m

The very first release of DB2 provided very simple RUNSTATS syntax — not much to
consider.

Looking at all the new features/keywords introduced over the next +10 releases
leaves a lot to consider and think about. The task of deciding WHAT to RUNSTATS and
which parameters to use has NOT gotten any easier — but it is even more crucial than
ever to provide the Optimizer with the “correct” keywords in order to get the best
possible performance.

DB2 10 introduced PROFILES making it easier to “memorize” what to RUNSTATS on
the TABLE level, and we will look into the details how to exploit this.

Still — we need to consider WHICH parameters to use depending on the static SQL
being executed as well as the more and more frequent dynamic SQL — DB2 11
introduced some cool new features to assist in this space and we will cover all of
these topics in the next 45 minutes.

The newer parameters are highlighted in RED / GREEN and YELLOW.

G

technologies

RUNSTATS PROFILES

* Finding the “correct” RUNSTATS parameters isn’t easy

= Once you have the “correct” syntax:
— Where do you save the parameters
— How do you re-use the syntax
— PROFILES can be the rescue

* However — Runstats Profiles don’t protect you 100%
— Can still be overridden
— Can still be modified
— Not mandatory to use profile once defined
— Maybe automationis a greatidea ?

G

technologies

Based on all the changes to the RUNSTATS syntax — and the Optimizer being more and
more sensible/sensitive to the statistics provided, finding the best RUNSTATS syntax is
not an easy task.

Once you have identified the “perfect” statements — how do you keep track of these
in order to be able to use these next time. Runstats PROFILES can be your lifeline
here.

However — once you have created a profile, this is not a guarantee that someone
won’t mess it up. These can still be overridden and modified and even deleted —and
there is no way to make sure the profile is always used (and there are some
limitations too).

Considering the advantages of profiles (we will see these) maybe this is a great time
to install a process to always use profile if available. This requires standards and
discipline !!!

G

technologies

RUNSTATS PROFILES

* The componentsin DB210and DB2 11

CREATE TABLE "SYSIBM".SYSTABLES PROFILES

("SCHEMA"™ VARCHAR (128) FOR MIXED DATA NOT NULL
, TBNAME VARCHAR(128) FOR MIXED DATA NOT NULL
. PROFILE_TYPE VARCHAR(32) FOR MIXED DATA NOT NULL
, PROFILE MODE VARCHAR(32) FOR MIXED DATA WITH DEFAULT NULL
P PRCFILE:Z‘EXT CLOB (1M) FOR MIXED DATA WITH DEFAULT NULL
, ROWID ROWID NOT NULL GENERATED ALWAYS
. PROFILE UPDATE TIMESTAMP (6) WITHOUT TIME ZONE NOT NULL

, PROFILE_USED TIMESTAMP (6) WITE T TIME ZONE WITH DEFAULT NULL
, CONSTRAINT "SCHEMA" PRIMARY KEY ("SCHEMA", TBNAME , PROFILE TYPE)
) IN DSNDBO6.SYSTSTPF

CCSID UNICODE PARTITION BY SIZE EVERY 64G;

technologies

DB2 10 introduced a new catalog table : SYSIBM.SYSTABLES_PROFILES.

There are a number of important “pieces” to pay attention to once you start to
exploit this feature:

1) Itis TABLE based — not tablespace or index

2) No indexes are provided out-of-the-box, so if you really start to exploit, additional
indexes might be useful depending on how you are exploiting this feature.

3) The most important column is PROFILE_TEXT which is a 1M CLOB column making
some tasks a challenge which we will cover later.

G

technologies

Create a profile

= Hasto be table specific — even though the tablespace only
has/can hold one table

= This syntaxis commonly used — but does not work with PROFILE

RUNSTATS TABLESPACE(INSIGHT.INSAS) TABLE(ALL)
INDEX(ALL)
SET PROFILE

KEYWORD OR OPERAND 'SET PROFILE' INVALID WITH
'TABLE ALL'

When you look at the table DDL — you can see the tablespace and database names
are not recorded in the RUNSTATS PROFILE table — only the table creator and table
name, so a PROFILE is table specific.

Some of the RUNSTATS syntax you have been using for years might not work when
creating and updating profiles. Since the PROFILE is table specific and you potentially
could have multiple tables in one tablespace, when a PROFILE is created (using SET
PROFILE command) you will have to specify the table(s).

Note: the SET PROFILE does NOT execute RUNSTATS — all that happens is the profile is
created in SYSIBM.SYSTABLES_PROFILES.

10

G

technologies

Create and USE a profile

RUNSTATS TABLESPACE(INSIGHT.INSAS)
TABLE(insight.application_daily) INDEX(ALL) SET PROFILE

SCHEMA INSIGHT

TBNAME APPLICATION_DAILY
PROFILE_TYPE RUNSTATS

PROFILE_MODE AUTO

PROFILE_UPDATE 2014-12-19-16.21.40.527209
PROFILE_USED 2014-12-19-16.21.40.527209
PROFILE_TEXT COLUMN (ALL) INDEX(*)

DSNUGUTC - OUTPUT START FOR UTILITY, UTILID = RASST02.RASST02B

DSNUGTIS - PROCESSING SYSIN AS EBCDIC

DSNUGUTC - RUNSTATS TABLESPACE (INSIGHT.INSAS)
TABLE (INSIGHT.APPLICATION DAILY) USE PROFILE

DSNUGPRF - THE STATS PROFILE WITH STATSTIME = 2014-12-19-16.21.40.527209
FOR TABLE APPLICATION DAILY HAS BEEN USED

technologies

Once the SET PROFILE syntax has been corrected, a row is inserted into the PROFILE
table. The PROFILE_TEXT (CLOB column) will hold everything but the TABLESPACE and
TABLE parameters from the syntax.

Two columns are not really used (but you can update if needed):

PROFILE_UPDATE describes when the PROFILE row was updated / inserted.
PROFILE_USED unfortunately doesn’t tell you when this profile was used last time
which would have been nice.

In order for RUNSTATS to use the profile you have created, simply execute the
RUNSTATS with the tablespace name and table name ONLY — and specify USE
PROFILE.

11

G

technologies

Use profile with additional keywords

= Not possible to specify USE PROFILE and additional keyword(s)—you will have to
UPDATE the PROFILE and then USE the PROFILE with the RUNSTATS job

RUNSTATS TABLESPACE(INSIGHT.INSAS)
TABLE(insight.application_daily) INDEX(ALL)

COLGROUP (BEGIN_DATE_TIME, SYSTEM_ID)

USE PROFILE

KEYWORD OR OPERAND 'USE PROFILE' INVALID WITH 'COLGROUP'

If you want to add additional keywords to RUNSTATS and at the same time use
PROFILE — this is not supported.

You will have to first UPDATE the profile and then USE the profile — so it is a two-step
process, but then the profile is changed for good which might defeat the purpose.
Of course it is possible to do RUNSTATS without specifying a profile at all — even
though a profile does exist.

12

G

technologies

Use profile with additional keywords

* Once the PROFILE has been updated with additional
keywords/parameters — then USE PROFILE can be used to
execute modified runstats (e cLo8 is modified accordingly)

RUNSTATS TABLESPACE(INSIGHT.INSAS)
TABLE(insight.application_daily) INDEX(ALL)
COLGROUP (BEGIN_DATE TIME, SYSTEM _ID)
UPDATE PROFILE

SCHEMA INSIGHT
TBNAME APPLICATION DAILY
PROFILE_TYPE RUNSTATS
PROFILE_MODE AUTO
PROFILE_UPDATE 2014-12-19-17.17.38.500090
PROFILE USED 2014-12-19-17.17.38.5000%0
PROFILE TEXT COLUMN (ALL) COLGROUP
- (BEGIN_DATE_TIME, SYSTEM ID) INDEX (*)

Once you update your RUNSTATS statement and use UPDATE PROFILE, you will be
able to use RUNSTATS and USE PROFILE with the additional keywords.

As you can tell from the PROFILE_TEXT, it will keep on being appended with the
keywords you add using UPDATE PROFILE.

Again — please remember that RUNSTATS is NOT executed when using UPDATE
PROFILE — it is still a two-step procedure to get the job done.

13

G

technologies

Retrieve current Access Path information

= Be careful for what you ask for — can confuse you like me
— Here is one reason for CLOB (1M) (6576 byte runstats control card)

RUNSTATS TABLESPACE (INSIGHT.INSAS) SHRLEVEL REFERENCE
TABLE (INSIGHT.APPLICATION_DAILY) SET PROFILE FROM EXISTING STATS

— |1 did NOT execute any RUNSTATS using these control cards
— EXISTING STATS retrieves ALL existing statistics from the catalog
— Can be useful to identify “unneeded/old” statistics

;O...CY.! (AB_APPL_PROG_ABEND,AB CANCEL | "OR"E AB_END_OF_MEMORY,AB_RESOLVE_INDOUBT,ACCEL ELIGIBLE_CPU,ACCE
z E..--_E..E E._\rSED }C’:E.. E....u BLE_ZI \CCE.. WAIT T-MZ ACCEL } a) T R}"ES ACOM | DD"RRS\“ CONT, ACE’ DDEFRR
_STRG, ACQ‘ DDEFRRSAF T XE A...O” ""'RS"R AZ.‘ER CA ABASE, I\.TER !'DEX ALTER_JAR,ALTER %SF . -

\Z. CC"R" 0 yﬁﬂ“ CC_SRCL:‘ BE\-:H

DATE_TIME, SYSTEM_ID) FREQVAL COUNT 10

4 ZD SY.'ESYS-D‘ ,..M)ds_\ﬂl FREQ
D SUBSYSTEM, PLAN) M\ME COMNECT
IME, SiS’E’ ID, SUBSYSTEM, A—A-l _NAME, CONNE!

0
ID, YEAR,MONTH) FREQVAL COUNT 10

ON_

»SUBSYSTEM) FREQVAL COUNT 20 MOST

D, YEAR) FREQVAL COUNT 20 MOST

D, YEAR, MONTH) FREQVAL COf 20 MOST
COUNT 20 MOST INDEX (ALL)

In case you don’t know WHAT kind of access path is present in the DB2 catalog — you
can retrieve the RUNSTATS KEYWORDS needed to produce what is present:

Using the SET PROFILE FROM EXISTING STATS

This kind of tells you why the PROFILE_TEXT is a 1M CLOB column —there can be a
LOT of information in the catalog assisting the DB2 Optimizer. This will also provide
you information about what OTHERs have RUNSTAT ’ed — and it can be very helpful to
identify what kind of statistics you don’t want to be collected.

In this case, | never created the control cards for RUNSTATS to collect all these
COLGROUPs — someone else must have requested these, but this syntax does retrieve
what’s present in the catalog.

Be careful however — since now the PROFILE will hold statistics to collect which you
might not care about — but it is a great help and you can save these control cards
(somehow) and RESET the current statistics (more about this later).

In this case — the RUNSTATS syntax being recorded in the PROFILE is almost 7000 byte
I

Good luck formatting and changing — we will look at this later since there are some
challenges.

G

technologies

Reset current Access Path information

= This can be very useful to “clean up” all existing access path
information from the catalog and create a new beginning

RUNSTATS TABLESPACE (INSIGHT.INSAS) RESET ACCESSPATH

= |f you re-execute the RESET, RUNSTATS does verify that the

statistics are gone

DSNUGUTC - RUNSTATS TABLESPACE(INSIGHT.INSAS) SHRLEVEL REFERENCE
TABLE (INSIGHT.APPLICATION_DAILY) RESET PROFILE FROM EXISTING STATS

DSNUSITS - NO EXISTING STATISTICS AVAILABLE FOR TABLE APPLICATION_DAILY
DSNUGBAC - UTILITY EXECUTION TERMINATED, HIGHEST RETURN CODE=8 p

technologies

G

Looking at the example on the previous slide — you might find you have way too much
or too outdated statistics in the catalog for the Optimizer to consider — you can very

easily eliminate ALL existing statistics (or stale statistics) by using the RESET
ACCESSPATH keywords with RUNSTATS (without using PROFILE).

Executing the RESET ACCESSPATH a second time without any RUNSTATS in-between
illustrates the statistics used by the optimizer is really gone. The catalog will look like

the object was just created — having negative one all over the place.

15

G

technologies

Reset current Access Path information

= Partition level statistics not cleaned up

— SYSINDEXPART and SYSTABLEPART not reset during RESET
ACCESSPATH execution

— Be aware of stale statistics

DSNUGUTC - OUTPUT START FOR UTILITY, UTILID = RASST02.RASSTO2B

DSNUGTIS - PROCESSING SYSIN AS EBCDIC

DSNUGUTC - RUNSTATS TABLESPACE (IDUG2015.SYSTSTAB) RESET ACCESSPATH

DSNUSRST - SYSCOLSTATS CATALOG ACCESSPATH STATISTICS RESET SUCCESSEUL

DSNUSRST - SYSTABSTATS CATALOG ACCESSPATH STATISTICS RESET SUCCESSFUL

DSNUSRST - SYSCOLDISTSTATS CATALOG ACCESSPATH STATISTICS RESET SUCCESSFUL 2 ' -
DSNUSRST - SYSCOLUMNS CATALOG ACCESSPATH STATISTICS RESET SUCCESSFUL f z
DSNUSRST - SYSTABLES CATALOG ACCESSPATH STATISTICS RESET SUCCESSFUL \' =
DSNUSRST - SYSCOLDIST CATALOG ACCESSPATH STATISTICS RESET SUCCESSFUL

DSNUSRST - SYSTABLESPACE CATALOG ACCESSPATH STATISTICS RESET SUCCESSFUL

DSNUSRST - SYSINDEXES CATALOG ACCESSPATH STATISTICS RESET SUCCESSFUL

DSNUSRST - RUNSTATS CATALOG TIMESTAMP = 2015-07-13-15.37.44.491430

DSNUGBAC - UTILITY EXECUTION COMPLETE, HIGHEST RETURN CODE=0

RUNSTATS TABLESPACE (PTDB.PTGE00TZ PART 4) RESET ACCESSPATH

KEYWORD OR OPERAND 'PART' INVALID WITH 'RESET ACCESSPATH'

tochnologies 1©

16

G

technologies

A couple of Hmmmm’s : Modify existing profiles

= |tis possible to update a portion of the PROFILE content

= Example: COLUMN can only be used once so just
UPDATE that portion)
RUNSTATS TABLESPACE (INSIGHT.INSAS) SHRLEVEL REFERENCE

TABLE (INSIGHT APPLICATION DAILY)
COLUMN(AB_APPL_PROG_ABEND,AB_CANCEL_FORCE) UPDATE PROFILE

= Deleting a portion is a different story

COLUMN (AB_APPL_PROG_ABEND, AB_CANCEL FORCE,*8 58505 MEMORY, A8 s

COLGROUP (BEGIN_DATE_TIME) FREQVAL COUNT 10 MOST COLGROUP (BEGIN_DATE_TIME,SYSTEM ID) FREQVAL COUNT 10
MOST COLGROUP (BEGIN_DATE TIME, SYSTEM_ID, SUBSYSTEM) FREQVAL COUNT 10 MOST

COLGROUP (BEGIN_DATE_TIME, SYSTEM_ID, SUBSYSTEM, PLAN_NAME) FREQVAL COUNT 10 MOST

COLGROUP (BEGIN_DATE_TIMESYSTEM_ID, SUBSYSTEM, FLAN NAME, CONNECTION_ID) FREQVAL COUNT 10 MOST
COLGROUP (BEGIN_DATE_TIME, SYSTEM_ID, SUBSYSTEM, PLAN NAME, CONNECTION_ID, YEAR) FREQVALCOUNT 10 MOST
COLGROUP (BEGIN_DATE_TIME, SYSTEM_ID, SUBSYSTEM, PLAN NAME, CONNECTION_ID, YEAR,MONTH) FREQVAL COUNT 10
MOST COLGROUP (BEGIN_DATE_TIME,SYSTEM Y) FREQVAL COUNT 10 MOST

COLGROUP (PLAN_NAME) FREQVAL COUNT 20 MOST COLGROUP (SYSTEM_ID, SUBSYSTEM) FREQVAL COUNT 20 MOST
COLGROUP (SYSTEM_ID, SUBSYSTEM, PLAN NAME) FREQVAL COUNT 20 MOST COLGROUP (SYSTEM_ID,

SUBSYSTEM, PLAN_NAME, CONNECTION_ID) FREQVAL COUNT 20 MOST

COLGROUP (SYSTEM_ID, SUBSYSTEM, PLAN_NAME, CONNECTION_ID, YEAR) FREQVAL COUNT 20 MOST

COLGROUP (SYSTEM_ID, SUBSYSTEM, PLAN_NAME, CONNECTION_ID, YEAR,MONTH) FREQVAL COUNT 20 MOST

COLGROUF (SYSTEM_ID, SUBSYSTEM, PLAN_NAME, CONNECTION_ID, YEAR,MONTH, DAY) FREQVAL COUNT 20 MOST INDEX (ALL)

technologies

Let’s have a closer look at how you can modify the content of a PROFILE.

Executing RUNSTATS with a KEYWORD (here COLUMN) will replace that specific part
of the profile.
You can also MODIFY an existing COLGROUP the same way.

If you want to DELETE a part of the profile — that is a complete different story which
we will cover later.

17

G

technologies

A couple of Hmmmm’s : Modify existing profiles

= Consider a scenario: you want to remove / add / modify a section of the
RUNSTATS_PROFILE.

* You do not have the RUNSTATS statement(s) feeding the profile

= There is no RUNSTATS parameter to retrieve and format except for buildingthe

profile

— You could use standard SQL to add/remove/modify the content of the 1M CLOB

column — takes some work using UPDATE SET CONCAT
= Will need to find location of text within the 1M CLOB
— Using an editor might be a better solution?
— Maybe UNLOAD followed by RUNSTATS DELETE PROFILE
= And EDIT the unload dataset prior to LOAD RESUME YES
= DSNUGMAP - UTILITY NOT ALLOWED AGAINST SYSTEM DATABASE

G

technologies

We just covered how to modify one or more parts of the profile — simply using the
KEYWORD with the new content.

Here is the issue: there is no way that | know of to retrieve the PROFILE content —
modify it and then reload the profile.

What | have done successfully is — one of two methods:

1) Use SQL UPDATE statement with CONCAT to modify the content. After all, it’s a
CLOB column so anything you can think of using SQL applies.

2) You could also UNLOAD the content — then modify it — execute runstats with
DELETE PROFILE and do a load resume yes.

3) Finally —if you have an editor in place, simply edit the content.

However — be careful since RUNSTATS with syntax USE PROFILE is picky and will tell
you if “he/she” doesn’t like what you have done.

18

G

technologies

A couple of Hmmmm’s : Partition Runstats

= For partitionedindexes :
— According to the Utility documentation:

= |f index specificationis used without PART keyword, this will replace all index
specifications

= |f PART keyword is specified, only the portion of the runstats profile for THE
SPECIFIED partitionis replaced.

— Do youreally need to worry about this ?
= |s there a need to have partition specific statistics for an index partition ?

— The statement below is valid in “normal” runstats— SET PROFILE results in
DSNU1379I : INVALID KEYWORD PART

RUNSTATS TABLESPACE PTDB.PTG600T2
TABLE (PTI.PTGL600_RESTART2)
INDEX(STEEN.IDUG15 PART3)

Another interesting story — unfortunately | have NOT been able to verify the
documentation.

The IBM documentation says that if you currently have partition specific keywords in
the profile, updating the profile with non-specific partition, the existing profile
content for the index partitions will be wiped out.

From my perspective — | really don’t worry about this since | don’t see a major need
for collecting specific stats for specific index partitions.

The RUNSTATS statement for partition 3 in the box executes fine without specifying
profile but it fails if you attempt to set / update the profile.

19

G

echnologies

Why do we care so much about RUNSTATS ?
...and REBIND for static SQL

It all boils down to “The nightmare of AP
Changes”

A topic which often turns into a very heated
discussion. When to RUNSTATS and

REBIND.

technologies

20

G

technologies

Different RUNSTATS and REBIND strategies from around the world

» When to RUNSTATS and when to REBIND? ??7??

Some do it after every REORG —but why ?
— Did the column cardinality change since last reorg ?
— Did the clusterratio change since last reorg ?

— Maybe the number of rows changed — but everything else is pretty
much the same so why bother —and why jeopardize stability ?

| have a different religion:
— Use RTS to determine when RUNSTATS might be needed
— Keep history of RTS since history isn’t supported out-of-the-box

How to RUNSTATS isn’t easy — but getting better with new autonomics

21 © 2016 CA. ALL RIGHTS RESERVED

technalogies

When to RUNSTATS and especially when to REBIND always turn into a heated
discussion.

There are many ideas / philosophies

| prefer to only RUNSTATS and REBIND when | know for sure | can benefit.

21

G

technologies

Development nightmare of Access Path Changes.

= DB2 10 really revolutionized AP stability — the feature is named
PLAN STABILITY (not really a great name).
— ZPARM enabled PLANMGMT can be OFF, BASIC, EXTENDED
— Will keep up to THREE access paths (Original, Previous, Current)
— Only valid for REBIND (same CONTOKEN / VERSION)

— REBIND option PLANMGMT(EXTENDED) will preserve OLD AP and create a
new AP

— If you are unhappy with performance / AP =» REBIND SWITCH(PREVIOUS)
— And you are back to the old AP.

— DB2 11 provides additional control using APREUSE and APCOMPARE to
control the AP changes ahead of time

— Finally, DB2 also has Statement Level Optimization (not covered hereb

hnologies

This was how you can be prepared and mimic the production environment — but no
matter how much you prepare, something will go wrong sooner or later — the access
path will change for the worse — and this is where you really can prepare yourself and
“get back to normal” as quickly as possible.

When you bind a PACKAGE, a new parameter named PLANMGMT can be used to
mitigate the nightmare of the favorite access path to be gone for good. The value OFF
is what we have had since packages were introduced.

The value EXTENDED will save the original access path, the current access path prior
to the REBIND will become the PREVIOUS and a new access path is generated. If you
are dissatisfied with the new access path, all you need to do is another rebind
specifying SWITCH(PREVIOUS) and you’re back to your previous access path (the
great one) before the rebind which changed the access path for the worse.

DB2 10 and DB2 11 has added more interesting options to the REBIND process
allowing you to better control when access paths are changed : APREUSE and
APCOMPARE are those options you might want to look into.

Both these options as well as the ability to also preserve access paths for dynamic
statements are not discussed in this presentation — but several presentations are
available out there on the crazy web.

G

technologies

Development nightmare of Access Path Changes.

= Earlier we discussed the problem about missing PLAN_TABLE
or EXPLAIN information.

* |f youdon’tsee it—how do you know ?

= Many DBA’s save generations of EXPLAIN data— but no
guarantee they were looking at the CURRENT behavior.

= DB2 11 comestothe rescue:
EXPLAIN PACKAGE

= Onlyvalidwhen the package already does exist

= Doesn’t really eliminatethe need to have historical explaininformation
saved

Earlier we discussed the importance of having access path information available, and
even though you always rebind or bind your packages with explain(YES), if that
package later was invalidated and DB2 automatically did the rebind (or even someone
else) —how can you tell the information stored in the explain-tables is the
information actually used when the package executes ?

In order to make sure you know exactly what the access path is, DB2 11 comes to the
rescue : it is now possible to retrieve the access path information from the directory.
This will really eliminate a lot of the guesswork and uncertainty when debugging
what DB2 is doing in terms of access path analysis. The best part is that the package
doesn’t have to have the EXPLAIN(YES) option enabled when it went through the
BIND/REBINDS originally.

23

G

technologies

Common RUNSTATS mistakes

€ C) www.worldofdb2.com/profiles/bl ~ 0 =

SignUp Signin Search The World of DB2 ol

i

IBM Smarter Analytics O

Manage Information,
Gather Insights, Outperform.

HOME EVENTS CALENDAR WEBCASTS COMMUNITY DB2 GETCONNECTED BLOGS &PODCASTS RESOURCES PHOTOS
YOUTUBE

All Blog Posts My Blog

G

technologies

Part of content from terry’s BLOG

= FREQVALNUMCOLS 4 COUNT 15 doesn’t provide NUMCOLS 3,

2 and 1 for multi-column frequency stats

— How often are these really used : Only EQUAL-predicates can take
advantage

— Excessive usage will cause Optimizer to work overtime

= NUMCOLS X COUNT 0 does clean up old/stale stats
= RUNSTATSINDEX separated from TABLESPACE (dueto reorg)

technologies

25

G

How can we satisfy Terry’s Optimizer ?

How can we pick the “correct” options for
RUNSTATS ?

Some new FEEDBACK tables come to the
rescue !

technologies

26

G

technologies

SYSIBM.SYSSTATFEEDBACK

FOR MIXED
FOR MIXED
FOR MIXED
FOR MIXED
FOR MIXED

DATA
DATA
DATA
DATA
DATA

FOR BIT DATA

FOR MIXED
FOR MIXED
FOR MIXED
FOR MIXED
FOR MIXED
FOR MIXED

CREATE TABLE "SYSIBM".SYSSTATFEEDBACK
(TBCREATOR VARCHAR (128)
, TBNAME VARCHAR (128)
, IXCREATOR VARCHAR (128)
, IXNAME VARCHAR (128)
, COLNAME VARCHAR (128)
, NUMCOLUMNS SMALLINT
,COLGROUPCOLNO VARCHAR (254)
, "TYPE" CHARACTER (1)
, DBNAME VARCHAR (24)
, TSNAME VARCHAR (24)
,REASON CHARACTER (2)
,BLOCK_RUNSTATS CHARACTER(1)
, REMARKS VARCHAR (762)
, LASTDATE DATE
) IN DSNDBO6.SYSTSSFB

APPEND NO

NOT VOLATILE CARDINALITY

DATA CAPTURE NONE

AUDIT NONE

CCSID UNICODE

PARTITION BY SIZE EVERY 64G;

DATA
DATA
DATA
DATA
DATA
DATA

NOT
NOT
NOT
NOT
NOT
NOT
NOT
NOT
NOT
NCT
NOT
NOT
NOT
NOT

NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL

This new table
has similar
functionality
and behavior as
we know from
the RTS tables.

aQ .

technologies <’

One of the feedback tables is part of the DB2 catalog :

SYSIBM.SYSSTATFEEDBACK

You can kind of compare this table with the RTS feature introduced initially in DB2 V7

— information is gathered in memory and externalized in conjunction with the RTS

statistics/metrics.

27

G

technologies

schema.DSN_STAT_FEEDBACK

CREATE TABLE STEEN.DSN_STAT FEEDBACK oo
("QUERYNO™ INTEGER - NOT NULL Another addltlon to
,APPLNAME VARCHAR (24) FOR MIXED DATA NOT NULL :

,PROGNAME VARCHAR (128) FOR MIXED DATA NOT NULL the myriad of
,"COLLID" VARCHAR (128) FOR MIXED DATA NOT NULL
,GROUP_MEMBER VARCHAR(24) FOR MIXED DATA NOT NULL EXPLAIN tables.
,EXPLAIN_TIME TIMESTAMP (6) WITHOUT TIME ZONE NOT NULL
,SECTNOI INTEGER NOT NULL

WITH DEFAULT
,VERSION VARCHAR(122) FOR MIXED DATA NOT NULL

WITH DEFAULT RUNSTATS does NOT
,TBCREATOR VARCHAR(128) FOR MIXED DATA NOT NULL .
, TBNAME VARCHAR(128) FOR MIXED DATA NOT NULL cleanup this table as
, IXCREATOR VARCHAR(128) FOR MIXED DATA NOT NULL =
, IXNAME VARCHAR(128) FOR MIXED DATA NOT NULL we will see happens
,COLNAME VARCHAR(128) FOR MIXED DATA NOT NULL <
,NUMCOLUMNS SMALLINT NOT NULL with the other
, COLGROUPCOLNO VARCHAR(254) FOR BIT DATA NOT NULL
,"TYPE" CHARACTER (1) FOR MIXED DATA NOT NULL FEEDBACK table.
,DBNAME VARCHAR(24) FOR MIXED DATA NOT NULL
,TSNAME VARCHAR(24) FOR MIXED DATA NOT NULL
,REASON CHARACTER (8) FOR MIXED DATA NOT NULL
,REMARKS VARCHAR(254) FOR MIXED DATA NOT NULL
)

Besides SYSIBM.SYSSTATSTFEEDBACK — there’s a similar table used in the same
fashion : DSN_STAT FEEDBACK

The two FEEDBACK tables are used in two different scenarios. SYSSTATFEEDBACK is
populated via BIND, REBIND and PREPARE while the other one via EXPLAIN (requires
the table is created with the same schema as the other explain table(s)).

Another difference is that SYSSTATFEEDBACK is cleaned up by RUNSTATS when the
“requested” statistics is collected via RUNSTATS — DSN_STAT _FEEDBACK is NOT
cleaned up.

G

technologies

Optimizer now helps coding RUNSTATS

PREP. | DSNDBOS statistics

| PREPARE |
REBIND RECOMMENDATIONS
KEPT IN MEMORY

. -

DSNZPARM
STATSINT
TIMER

H

EXPLAIN

[SYSIBM SYSSTATFEEDBACK |

| xxcDSN_STAT FEEDBACK |

@

hnologies

Let us have a close look at how these tables function in real life:

For Bind, Rebind and prepare — in memory — the statistics missing which potentially
could have been used by the optimizer is recorded. Based on the same timer used by
RTS — this information is externalized into SYSSTATFEEDBACK. Just like RTS, the
information can also be externalized by using the ACCESS DB command.

DSN_STAT_FEEDBACK is populated directly into the table during EXPLAIN.
Please remind yourself that the DB2 optimizer is COST based.
This being said — the tables are populated with information which POTENTIALLY could

have been used by the optimizer if present, but there is no guarantee that the access
path can change — nor that that the “missing” information is needed to collect.

29

G

technologies

= FEEDBACK tables
— Content provided during AP (Access Path) analysis.

— Information the optimizer potentially could have
used to determine AP.

— Absolutely NO guarantee the information once
provided can change AP.

BASIC A basic statistic value for a column table or index is missing.
No statistics were collected for theidentified object.

KEYCARD The cardinalities of index key columns are missing.

LOWCARD The cardinality of the columnis a low value, which indicates
that data might be skewed.

NULLABLE Distribution statistics are not available for a nullable column,
which indicates that data might be skewed.

DEFAULT A predicate references a value that is probably a default value, which indicates that
data might be skewed.

RANGEPRD Histogram statistics are not available for a range predicate.

PARALLEL Parallelism could beimproved by uniform partitioning of key ranges.

CONFLICT Another statistic contains a value that conflicts with the value of this statistic. Such
conflicts usually occur because statistics
were collected for related objects at different times.

COMPFFIX Multi-column cardinality statistics are needed for compound filter factor.

LL RIGHTS RESERVED technologies

SYSSTATFEEDBACK is a new table used by the Optimizer to report “missing stats”,
insufficient stats” and other discrepancies.

The content isn’t ready and readable for the human eye, so it will take some learning
unless you want to depend on tools interpreting the content.

At least the column=REASON point you in the right direction.

30

G

technologies

How to control what goes INTO SYSSTATFEEDBACK

= DSN_STAT_FEEDBACK populated if present at EXPLAIN time.

= SYSSTATFEEDBACK can be controlled:

— DSNZPARM parameter STATFDBK_SCOPE
ALL/NONE/STATIC/DYNAMIC

— SYSIBM.SYSTABLES.STAT_FEEDBACKY/N whether to externalize for a
specific table or not (we will cover why this can be interesting on the
next slide)

— SYSIBM.SYSSTATFEEDBACK column BLOCK_RUNSTATS Y / blank

= |f Y(es) specified : message to non native DB2 procedures to not execute
RUNSTATS for example.

= Does NOT impact native DB2 RUNSTATS execution at all.

We already mentioned how the two FEEDBACK tables are populated.

Unlike the FEEDBACK table associated with EXPLAIN (where you really have no
control), there are a few parameters you need to be aware of in terms of dealing with
SYSIBM.SYSSTATFEEDBACK:

1) STATFDBK_SCOPE is a new DSNZPARM parameter which controls whether you
want feedback for STATIC only, DYNAMIC only, BOTH static and dynamic or BOTH
static and dynamic.

2) SYSTABLES has a new column where you can describe whether to have DB2
collect the “missing information” or not.

3) Finally —the last point of control is a column in SYSSTATFEEDBACK named
BLOCK_RUNSTATS which is NOT controlled by DB2 at all. It is meant to be used by
“tools” — BLOCK_RUNSTATS.

It is time to have a closer look at how to execute RUNSTATS based on how the
optimizer provides feedback !

31

G

technologies

SYSIBM.SYSTABLES.STAT_FEEDBACK Y/N whether
to externalize for this table or not — here is one reason

(SYSLGRNX can not be RUNSTATSed)

I XNAME

[COLNAME

NUMCOLUMNS

m

REASON

COLG ROUPCOLNO [HEX)

DSNLLO1

3

COLG ROUPCOLNO

KEYCARD

|00 01 00020007

DSNLLOL

BASIC

DSNLLO2

BASIC

BASIC

DSNLLOL

KEYCARD

00 01 0002

LGRPART

BASIC

LGRPSID

BASIC

LGRDBID

BASIC

DSNLLOL

KEYCARD

10001 000207 0008

LGRSRBA

b fos Ji fos |1 | [|0 |0 |0

ﬂnnnnnn—l44ng

BASIC

LGRPART

DEFAULT

DSNUGUTC-OUTPUT STARTFORUTILITY, UTILID=RASST02 RASST02B
DSNUGUTC - RUNSTATS TABLESPACE(DSNDB01 S§YSLGRNX) INDEX(ALL) SHRLEVEL CHANGE
DSNUGMAP - UTILITY NOT ALLOWED AGAINST SYSTEM DATABASE

DSNUSVAL - ERROR OCCURRED IN ACCESSING TABLESPACE DSNDB01.SYSLGRNX

— Updating column BLOCK_RUNSTATS to “Y” doesn’t prohibit RUNSTATS
from executing and collecting/updating the statistics specified.

— SYSSTATFEEDBACK will only have externalized information for tables
not marked with “N” in SYSIBM.SYSTABLES.STAT_FEEDBACK

Once you have enabled DB2 to collect “missing statistics” you can start to make sure
you collect the “appropriate” RUNSTATS information based on SYSSTATFEEDBACK.
One issue to have in mind is — not every table being reported on is eligible tor
RUNSTATS — this example is the directory table SYSLGRNX, but as you can see, it is
NOT possible to execute RUNSTATS against directory objects, so maybe you should
consider excluding DBO1 objects by updating SYSTABLES and mark these as NON-

collectible ???

Another issue to consider is, even though you mark SYSSTATFEEDBACK.block_runstats

as “Y”, this doesn’t prohibit anyone from collecting RUNSTATS statistics.

32

G

technologies

Who is cleaning up the FEEDBACK tables ?

= Forthe extension to EXPLAIN — you have a new task !!

= Forthe SYSIBM.SYSSTATFEEDBACKtable, the cleanup process can happenina

few ways:

— When RUNSTATS is executed updatingthe catalog with the information
registered in SYSSTATFEEDBACK - auto cleanup.

— You canSQL DELETE if you wantto

e e e e e e
ATICN CR OPTICN

INSERT IS N
-

— INSERT / UPDATE isn’t possible

— WISH : | would like to see LAST_USED be changed from DATE to TIMESTMP
(don’t have to use ACCESS DB to externalize).

— When an objectis dropped —cleanup is done too.

G

technologies

If you decide to “listen” to the optimizer and start to modify your favorite runstats,
you do have a quite a task ahead of you — depending on far you want to go.

One issue you need to consider is how DB2 (runstats) does the cleanup of
SYSSTATFEEDBACK. When you follow the feedback provided and execute the
corresponding runstats, the information you used from SYSSTATFEEDBACK leading to
the corresponding runstats will be removed by runstats.

You do have the opportunity to SQL DELETE from SYSTSATFEEDBACK yourself if so
desired, but the information will probably be re-populated ©

From my perspective, | would like the column LAST_USED in SYSSTATFEEDBACK to be
extended from DATE to TIMESTAMP — and | would like the date to reflect when a
RUNSTATS USE last time used the information.

What is neat is — when an object is dropped, SYSTATSFEEDBACKk is cleaned up too —
just like RTS.

Despote all these nice features — there’s always a Christmas wishlist: | would like to

see when RUNSTATS executed really used the profile. We have the LAST_USED
column so maybe a wish for DB2 Cypress ???

33

G

technologies

SYSSTATFEEDBACK : how does it really work

SCENARIO:

1. Create IDUG15.SYSTABLES a true copy of SYSIBM.SYSTABLES including
indexes

2. Check SYSSTATFEEDBACK
-ACCESS DB(IDUG2015) SP(SYSTSTAB) MODE(STATS) executed between every step
INSERT rows into IDUG15.SYSTABLES and check
RUNSTATS tablespace and check again
RUNSTATS tablespace INDEX(ALL) and check again
BIND PACKAGE and check again
EXTEND RUNSTATS to use TABLE(all) INDEX(all)
Check SYSSTATFEEDBACK to see what RUNSTATS does to the content

0 N O U W

. Q

3
hnologies ©

Let’s walk through a live scenario to see how the information flows and the changes
based on the action you take.

1)
2)

3)
4)
5)
6)
7)
8)

We create a copy of SYSTABLES including the associated indexes.

Check SYSSTATFEEDBACK to see if anything got inserted. In order NOT to wait for
the timer to externalize, and to make sure we look at the latest information,
ACCESS DB is executed prior to every view of SYSSTATFEEDBACK.

Insert rows into the table and check what happened.

RUNSTATS tablespace (basic runstats) and check content

RUNSTATS tablespace with INDEX(ALL) and check

BIND PACKAGE and check

RUNSTATS using TABLE syntax and check

One final check into SYSSTATFEEDBACK

34

G

technologies

Table IDUG15.SYSTABLES created and populated
(dynamic SQL -> PREPARE executed) : then check SYSSTATFEEDBACK

IXNAME

COLNAME

NUMCOLUMNS

COLGROUPCOLNO

REASON

DSNDTX01

BASIC

DSNDTX03

BASIC

DSNDTX02

BASIC

BASIC

DSNDTX05

o|lo|o|o|o

TYPE
|
|
|
3 i
|

BASIC

= What the Optimizer tells

— BASIC runstats missing for all four indexes

— BASIC runstats missing for the table
— RUNSTATS TABLESPACE (db.ts)

= |et’s have anotherlook at SYSSTATFEEDBACKto see the changes

= Even an UNQUALIFIED DELETE feeds the same
information !!

SYSSTATFEEDBACK did not get populated by creating a table.

Once the INSERT statement was executed, information was gathered: due to the
INSERT statement being PREPARE’d (one of the three tasks which will populate the

table).

We got one row TYPE=T telling us RUNSTATS is missing for the tablespace.
We got one row for each of the indexes telling us RUNSTATS INDEX(....) is missing.

Let’s RUNSTATS the TABLESPACE as the first task and see the content change ?.

35

G

technologies

RUNSTATS TABLESPACE and check
SYSSTATFEEDBACK

IXNAME

COLNAME

NUMCOLUMNS

REASON

DSNDTX01

0

BASIC

DSNDTX03

BASIC

DSNDTX02

0
0
0

COLGROUPCOLNO | TYPE
|
|
|
|

BASIC

DSNDTX05

BASIC

* What happened ?
— The TYPE ‘T’ basic runstats has been removed.

— Runstatsreally does clean up entries when
the request has been completed.

= What the Optimizer tells

— BASIC runstats missing for all four indexes.

As expected, doing RUNSTATS on the TABLESPACE caused the TYPE=T row to be

deleted by runstats.

Let’s do the RUNSTATS of the indexes.

36

G

technologies

RUNSTATS TABLESPACE INDEX(all)
and check SYSSTATFEEDBACK

[1xname [coLnamE [NUMCOLUMNS [colGrouPcoLND [TYPE [REASON |

= What happened ?
— The TYPE ‘I’ basic runstats has been removed.

— Runstatsreally does clean up entries when the
request has been honored and completed.

G

technologies

RUNSTATS TABLESPACE db.td INDEX(all) executed, and all the remaining rows for this
object was cleaned up by RUNSTATS — very nice !!

37

G

technologies

BIND PACKAGE and check SYSSTATFEEDBACK

IXNAME

COLNAME

NUMCOLUMNS

COLGROUPCOLNO

TYPE

REASON

NAME

1

BASIC

TYPE

1

BASIC

* What happened ?

— Column=NAME is not the first column in any index
but predicates are referencing this column

— Column=TYPE is not included in any index at all but

used in WHERE predicates

= Once RUNSTATS tablespace TABLE(all) INDEX(all)
executed the SYSSTATFEEDBACK is empty for this object.

Now it is time to BIND a package with statements referencing this table

IDUG15.SYSTABLES.

Two rows were inserted into SYSSTATFEEDBACK — both being COLUMNS from the

table.

The interesting thing is — column=NAME is NOT the first column in any index, so there
must be predicates in the package referencing this column.

Column=TYPE is not in ANY index at all — again this column is used in various WHERE

predicates.

TYPE=C means that the Optimizer would like to see CARDINALITY for these columns —
maybe a different access path can be chosen

38

G

technologies

Different and more complex scenario — let’s start
with the content of SYSSTATFEEDBACK

XNAME [COLNAME NUMCOLUMNS |COLGROUPCOLNO | TYPE |REASON _ |COLGROUPCOLNO (HEX LASTDATE
INSAS| 6 v C |XKEYCARD |00010003 0004 0007 00 0800 0C 2014-12-12
INSASI 5 C |KEYCARD |00 010003 0004 0007 00 08 2014-12-12
INSAS| 2 C |KEYCARD |00010003 2014-12-12
0 T _|Basic 2014-12-12

INSAS| [+] 1_|BASIC 2014-12-12
ICONNECTION_ 1D 1 C |sasic 2014-10-23

INSAS| 3 C |KEYCARD 000100030004 2014-12-12
INSAS| 4 C |KEYCARD |00 010003 00040007 2014-12-12
INSAS| 7 C |KEYCARD |00010003 0004 0007 0008000C000D |2014-12-12
SYSTEM 1D 4 C |COMPFFIX |OD 030004 0007 0008 00 OC00 OD 00 OF |2014-09-10

YEAR 1 C _|BasiC 2014-10-23

SYSTEM_ID 1 C _|BAsiC 2014-10-23

|END DATE TIME 1 C _|sasic 2014-12-12

BEGIN_DATE TiI 1 C_|sasiC 2014-12-12

DAY 1 C _|BASIC 2014-10-23

MONTH 1 C _|Basic 2013-10-23

PLAN_NAME 1 C _|Basic 2013-10-23

REQUESTOR LOCA 1 C_|BASIC 2014-08-10

SUBSYSTEM 1 C _|BAsIC 2014-10-23

PLAN_NAME 1 F_|DEFAULLT 2014-08-26

* COLGROUPCOLNO (HEX) is not a column — but the content

of COLGROUPCOLNO unpacked in a readable format

@

29
hnologies -

The previous scenario was pretty basic, so let us have a closer look at what kind of
challenges you might face once you start to exploit this feature.

This table has a LOT of content in SYSSTATFEEDBACK — there really is a lot to digest
and think about.

Only one BASIC TABLESPACE and BASIC INDEX RUNSTATS needed — the rest of the
information is related to CARDINALITY, so time put the thinking hat on !!
We also have a FREQUENCY information : TYPE=F

Please note the different LASTDATE dates — might give you a clue when / why the
information was provided and by who??

Another great piece of information is the NUMCOLUMNS (number of columns which
need COLGROUP COLNO) — for readability | have expanded this column into HEX so it

can be correlated to the TABLE-COLUMN-NUMBERS.

39

G

technologies

Different and more complex scenario — let’s start
with the content of SYSSTATFEEDBACK
= So what can we do with these T
hexadecimal numbers ? 1
— Once you get the grip you are good to go. -
5
— Let’s pick the first one from the grid !! ¢ e o
REASON COLGROUPCOLNO (HEX) io ﬁgﬁégﬁgggnw
KEYCARD 0001 0003000400 0008 00 OC ﬁ NE_ECRK-I:
— We have to look at the TABLE-COLUMN order g grgi .
to digest the numbers from . ;gggvﬁvm
COLGROUPCOLNO. 18 CoMNTYEE
— Remember to convert the SYSSTATFEEDBACK
column number to decimal when looking at
SYSCOLUMNS. ca

If we look at the first row where TYPE=C and NUMCOLUMNS=6, we need to unpack
the COLGROUPCOLNO column in order to identify the corresponding column names
from SYSCOLUMNS.

Then this information can be transformed into a COLGROUP parameter.

(2

technologies

41 © 2016 CA ALL RIGHTS RESERVED 41

Different and more complex scenario — let’s start
with the content of SYSSTATFEEDBACK

* Considering the number of COLGROUPCOLNO entities in SYSSTATFEEDBACK, let’s

see how the optimizer likes the most basic RUNSTATS

RUNSTATS TABLESPACE(INSAS INSIGHT) TABLE(ALL) INDEX(ALL)

IXNAME COLNAME INUMCDLUMNS COLGROUPCOLNO |TYPE |REASON [COLGROUPNO (HEX]
SYSTEM 1D y S| PSR C COMPFFIX |00 0300040007 00 08 00 OC 00 0D mOL‘
PLAN_NAME I 1 F__|oeraur

RUNSTATS TABLESPACE(INSIGHT.INSAS) TABLE(INSIGHT APPLICATION DAILY)

COLGROUP(SYSTEM_ID,SUBSYSTEM,PLAN NAME CONNECTION_ID,YEAR MONTH,DAY)

IXNAME [coLname | numcoLumns [coGrourcowno [Tyee [REASON [COLGROUPNO (HEX) |
|PLAN_NAME I 1 [F__ [oeraurr | |

RUNSTATS TABLESPACE (INSIGHT.INSAS) TABLE(INSIGHT.APPLICATION_DAILY)
COLGROUP(PLAN_NAME) FREQVAL COUNT 20 SHRLEVEL CHANGE

technologies

Just by executing the most basic RUNSTATS using TABLE(ALL) and INDEX(ALL)
eliminates most of the content from SYSSTATFEEDBACK — and there’s only two entries
left.

In order to eliminate TYPE=C, we need the COLGROUP parameter but have to
“unpack” the 7 columns into HEX and then find the corresponding column numbers
from SYSCOLUMNS for that specific table.

Only one left now — TYPE=F so we need FREQVAL. What number to pick ???? | picked
20 and the default is 10, so please use your best judgment.

All of these parameters can now be added to a RUNSTATS PROFILE so you don’t need
to memorize.

G

technologies

How to avoid populating SYSSTATFEEDBACK

For Table => SYSIBM.SYSTABLES > Row number=> 3 OF 3

Edit Mode => F Max Char => 25¢

Option = Status =

BEINE DY Ll i e e e e e b e e e s et RASSTO2
$3.COLUMN NAME NULL DATA FOR ROW # 3

AL.NAME SYSLGRNX

A2 .CREATOR SYSIBM

A3 . DBNAME DSNDBO1

A4.STATS_FEEDBACK N

............................... BOTTOM OF DATA 4éévésvsstvisbbisbisbsbssbsiss

* There might be some tables where you don’t want

SYSSTATFEEDBACKto be populated for various reasons
— Some tables can not have RUNSTATS executed

— You might want to ensure RUNSTATS is only executed based on PROFILES

* Update SYSTABLES.STATS_FEEDBACK to be ‘N’

— The Optimizer will not populate SYSSTADFEEDBACK ca

We haven’t really covered the an associated column (new in DB2 11) in
SYSIBM.SYSTABLES.

The column STATS_FEEDBACK will block the optimizer from feeding information into
SYSSTATFEEDBACK.

42

G

technologies

Steen’s ideas for better usage — what’s missing

= |ssuein DB2 10 when using LISTDEF — solved in DB2 11
— All tables in LISTDEF must have PROFILE — otherwise job fails.

= The PACKAGE name causing the rows to be inserted isn’t in the table.
= DB2 makes sure no duplicatesexist in SYSSTATFEEDBACK.

= Could be useful to see the SYSSTATFEEDBACK “insert’er”.

= Maybe a counter (| realize “duplicates” can’t be ruled out)

= TIMESTAMP instead of DATE (at least | wouldn’t have to use ACCESS DB all the
time making sure | was looking at the “right and most current data”)

®* |nline STATS can NOT use PROFILES

As always Steen has a Christmas wishlist for Santa :

1) One issue which did exist in DB2 10 has been resolved in DB2 11 — if using LISTDEF
for your RUNSTATS and just one table doesn’t have a profile, the entire process
will fail.

2) The PACKAGE name feeding information isn’t recorded in SYSSTATFEEDBACK. |
understand there probably will be dozens or hundreds of packages, but somehow
this information could be useful — perhaps an internal identifier along with one
additional table so you can correlate the information.

3) Since the optimizer doesn’t feed DUPLICATE information (could be useful if
package name was introduced), a counter for the information in
SYSSTATFEEDBACK.

4) It would have been nice for this research to have the DATE column expanded to
TIMESTAMP. Then | would not have been forced to use ACCESS DB between every
case to get an instate view.

5) Finally — INLINE STATS for reorg and load do NOT support profiles.. Maybe
NEVER do inline stats anymore ?

43

G

technologies

Wrap Up and conclusion

= SYSSTATFEEDBACKis a GREAT “tool”
= SYSTABLES PROFILESis another great autonomic feature

- But everything isn’t green(er) — despite better !
— Consider SCHEMA CHANGES where columns are dropped /
renamed

— Let’s look at a couple of challenges

ALTER TABLE IDUG15.SYSTABLES RENAME COLUMN TYPE TO TYPE4 ;
ALTER TABLE IDUG1S5.SYSTABLES DROP COLUMN LABEL RESTRICT ;

— How does these features integrate with SYSSTATFEEDBACK and
RUNSTATS_PROFILES ??

G

technologies

DB2 indeed does a great job recording “missing” runstats in SYSSTATFEEDBACK, and
once you have identified the needed runstats, instead of memorizing these, you can
describe the syntax in the SYSTABLES_PROFILES by using the SET / UPDATE PROFILE

syntax in RUNSTATS.

Let’s see if the grass really is greener . . . How does DB2 handle schema changes like
DROP COLUMN and RENAME COLUMN ?

44

G

technologies

The DB2 world is getting better — new challenges ?

= DROP column—clean up not instantaneous
— Reorg execution cleans up SYSSTATFEEDBACK

= RENAME column also renames columnin
SYSSTATFEEDBACK instantaneous

DSNUGUIC - RUNSTATS TABLESPACE (IDUG2015.SYSTSTAB) SHRLEVEL REFERENCE TABLE
USE PROFILE PROFILE

DSNUGFRB - PARSING STATS PROFILE FOR TABLE SYSTABLES

DSNUGPRB - PARSING STATS PROFILE FOR TABLE SYSTABLES COMPLETED

DSNUSVAL - COLUMN LABEL NOT FOUND FOR TABLE IDUG1S5.SYSTABLES

DSNUSVAL - COLUMN TYPE NOT FOUND FOR TABLE IDUG1S5.SYSTABLES

DSNUGBAC - UTILITY EXECUTION TERMINATED, HIGHEST RETURN CODE=8

AARRE AR A AR AR AR AR AR AR R R R R ARk hddd ki hd g of Data AR AR AR AR Ak AR AR AR

G

45

technologies

DB2 cleans up SYSSTATFEEDBACK very nicely —the RUNSTATS profiles is a different
matter — you need to make sure to keep the COLUMN and COLGROUP parameters
updated if used in the RUNSTATS profile, and this is a manual process.

Another place where you need to pay attention is STALE statistics. DB2 doesn’t
provide a mechanism to inform you about this situation.

maintaining schema changes in SYSSTATFEEDBACK.

G

technologies

DB2 12 web cast late March looks very
promising for “closing the gaps”.

Inline Stats using profiles.

Automatic creation of profiles.

Schema management maintenance of profiles

T
technologies -

46

(2

technologies

The DB2 world is getting better — new challenges ? A
response from Terry on DB2 LISTSERV

= InDB2 11 - the optimizer will externalize missing statistics to the catalog (SYSIBM.SYSSTATFEEDBACK
after NFM) or during explain (providedtable DSN_STAT FEEDBACK exists - available in CM). This
identifies when statistics were missing that could have been used. There is no other method - other

than with tooling, to know if existing statistics are actually used by the optimizer.

= |fyouhaveanindexonCl, C2, C3- and thatis the index you want to drop. Then the
recommendationis to collect COLGROUP(C1,C2,C3). But collect them AFTER dropping the index,
and not BEFORE. If you collect them before, then dropping the index will remove those statistics
from SYSCOLDIST. SYSCOLDIST does not know whether the statistics were collected from an index

or via COLGROUP - and will remove upon DROP that could have been collected via thatindex.

alass i technologies

G

technologies

Wrap Up and conclusion

SYSSTATFEEDBACK is a great help getting RUNSTATS right
— Will you be collecting too much statistics ?
— Doesit matter ? zlIP offload really helps.

= Clean up works like a charm
— New SQL being reflected
— Column modifications —very cool/nice

* Once you have RUNSTATS defined — integrate with another
autonomic feature SYSTABLES_PROFILES so the “right”
statistics are collected every time

@

chnologies

Integrating the granular defined RUNSTATS derived from SYSSTATFEEDBACK with
SYSTABLES_PROFILES can for sure help a lot getting the appropriate statistics
generated when needed.

DB2 does a great job maintaining currency for SYSSTATFEEDBACK

48

G

technologies

Wrap Up

= Hopefully you will benefit from the content and get less

nightmares or headaches about RUNSTATS in the future !!

Thank You

QUESTIONS ?

49

G

technologies

Agenda

TITLE OF SECTION ONE
TITLE OF SECTION TWO
TITLE OF SECTION THREE
TITLE OF SECTION FOUR
TITLE OF SECTION FIVE

TITLE OF SECTION SIX

wu
=]
¥
¥
&
T
E
2
%

50

G

technologies

Title — Title Case, Calibri 28 pt
2 Lines Max

= Bullet 1, Calibri regular 24 pt
— Sub-bullet, Calibri regular 20 pt
= Sub-sub-Bullet, Calibriregular 18 pt
— Sub-sub-sub Bullet, Calibri regular 16 pt

= Sub-sub-sub-sub Bullet, Calibri regular 14 pt

G

technologies

CGa

technologies

52

